Taylor's Expansion Revisited: A General Formula for the Remainder
نویسندگان
چکیده
Taylor’s polynomial is a central tool in any elementary course in mathematical analysis. Nowadays, its importance is centred on its applications, for instance, to asymptotic analysis or to obtain satisfactory numerical or integral inequalities see, e.g., 1–5 . The core of these results comes from manipulations on the explicit formula of the remainder, that is, the error estimation when considering the Taylor’s polynomial expansion instead of the function. In this paper, we provide a new explicit formula for the remainder that generalizes classic ones, namely, Schölomilch, Lebesgue, Cauchy, and Euler’s remainders. Inspired by the explicit expression for an arbitrary polynomial
منابع مشابه
Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion
On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.
متن کاملGeneralization of Taylor's Theorem and Newton's Method via a New Family of Determinantal Interpolation Formulas
The general form of Taylor's theorem gives the formula, f = P n + R n , where P n is the New-ton's interpolating polynomial, computed with respect to a connuent vector of nodes, and R n is the remainder. When f 0 6 = 0, for each m = 2; : : :; n + 1, we describe a \determinantal interpolation formula", f = P m;n +R m;n , where P m;n is a rational function in x and f itself. These formulas play a...
متن کاملTaylor's Expansion for Composite Functions
We build a Taylor's expansion for composite functions. Some applications are introduced, where the proposed technique allows the authors to obtain an asymptotic expansion of high order in many small parameters of solutions.
متن کاملA note on the Bernstein ’ s cubature formula
The Bernstein’s cubature formula is revisited and the evaluation of it’s remainder term is corrected. 2000 Mathematics Subject Classification: 65D32, 41A10, 41A63
متن کاملResurgence of the Euler-MacLaurin summation formula
Abstract. The Euler-MacLaurin summation formula relates a sum of a function to a corresponding integral, with a remainder term. The remainder term has an asymptotic expansion, and for a typical analytic function, it is a divergent (Gevrey-1) series. Under some decay assumptions of the function in a half-plane (resp. in the vertical strip containing the summation interval), Hardy (resp. Abel-Pla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012